First asymmetric synthesis of α-methylphosphophenylalanine derivatives using sulfinimine derived chiral enantiopure aziridine-2-phosphonates

Franklin A. Davis,* William M^cCoull and Donald D. Titus

Department of Chemistry, Temple University, Philadelphia, PA 19122, USA

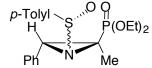
SUPPLEMENTARY MATERIAL

General Procedure. Column chromatography was performed on silica gel, Merck grade 60 (230-400 mesh). Analytical and preparative thin layer chromatography was performed on precoated silica gel plates (250 and 1000 μ m) purchased from Analtech Inc. TLC plates were visualized by quenching of UV fluorescence (λ_{max} 254 nm), staining with iodine or staining with 10% w/v ammonium molybdate in 2 N sulfuric acid. Melting points were recorded on a Mel-Temp apparatus and are uncorrected. Optical rotations were measured on a Perkin-Elmer 341 polarimeter. IR spectra were recorded using NaCl plates or as KBr discs, on a Mattson 4020 FTIR spectrometer. ¹H, ¹³C and ³¹P NMR were recorded on a General Electric Omega 500, operating at 500, 125 and 202 MHz repectively. The ¹H and ¹³C spectra are referenced to solvent residues as an internal standard and ³¹P spectra referenced externally to 85% H₃PO₄. HRMS were performed in the Department of Chemistry, Drexel University, Philadelphia, PA using a Fissions ZAB HF double focusing mass spectrometer. Elemental analyses were performed in the Department of Chemistry, Philadelphia, PA.

THF and Et₂O were freshly distilled under an inert atmosphere from a purple solution of sodium/benzophenone ketyl. Anhydrous CH₂Cl₂, DMSO and LP were obtained by refluxing over calcium hydride followed by distillation under an inert atmosphere. LP refers to the fractions of petroleum ether which boil within the range 35-60 °C. All other reagents were used as obtained from commercial sources or purified by methods described in D. P. Perrin and W. L. F. Armarego, 'Purification of Laboratory Chemicals,' Third Edition, Pergamon Press, 1988. All reactions were performed under an inert atmosphere of argon unless otherwise stated and all glassware was vacuum or oven dried before use.

D i e t h y l (S_S , I_R 2R)-(+)-1-chloro-1-methyl-2-phenyl-2-(*p*-toluenesufinamide)ethylphosphonate (3) and a (69:31) mixture of diethyl (S_S , IS 2R)-1-chloro-1-methyl-2-phenyl-2-(*p*-toluenesufinamide)ethylphosphonate (4) and diethyl (S_S , IS, 2S)-1-chloro-1-methyl-2-phenyl-2-(*p*-toluenesufinamide)ethylphosphonate (5). In a 250 mL round-bottom flask equipped with a magnetic stirrer bar, rubber septum and argon balloon was placed (S)-(+)-N-(benzylidene)-*p*-toluenesulfinamide (1)¹ (1.14 g, 4.69 mmol) and diethyl chloroethylphosphonate² (2.06 g, 10.3 mmol) dissolved in THF (120 mL). The stirred solution was cooled to -78 °C and

LiN(SiMe₃)₂ (10.3 mL, 1M in THF, 10.3 mmol) was added dropwise *via* syringe. After stirring at -78 °C for 20 min, the reaction mixture was quenched by addition of saturated aqueous NH₄Cl (5 mL) and warmed to rt. After dilution with H₂O (20 mL) the mixture was extracted with Et₂O (3 × 100mL) and CH₂Cl₂ (100 mL). The combined organic phases were dried (MgSO₄), filtered and concentrated to give a yellow oil. Flash chromatography (SiO₂, CH₂Cl₂-EtOAc, 15:1; 2:1; gradient elution) afforded recovered diethyl chloroethylphosphonate (657 mg), (+)-**3** (1.16 g, 56%) as a white solid and an inseparable 69:31 mixture of **4** and **5** (478 mg, 23%) as a colourless oil; Crystals of (+)-**3** suitable for X-ray analysis were obtained by slow recrystallisation from ether-LP (1:1).

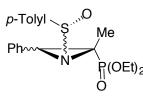

 $\begin{array}{c} O \\ p\text{-Tolyl} \xrightarrow{\mathsf{O}} \\ \mathsf{NH} \\ \mathsf{P}(\mathsf{OEt})_2 \\ \mathsf{Me} \\ \mathsf{Cl} \end{array} (+) - 3: R_{\mathrm{f}} 0.25 \ (\mathrm{CH}_2\mathrm{Cl}_2 - \mathrm{EtOAc}, 5:1); \text{ mp } 102 \ ^{\circ}\mathrm{C}; \ [\alpha]_{\mathrm{D}}^{20} + 24.3 \ (c \ 1.01, \\ \mathrm{CHCl}_3); \mathrm{IR} \ (\mathrm{NaCl}) \ 3212, 1243, 1035 \ \mathrm{cm}^{-1}; \ ^{1}\mathrm{H} \ \mathrm{NMR} \ (\mathrm{CDCl}_3) \ \delta \ 1.09 \ (3\mathrm{H}, \mathrm{t}, \\ 3J \ 7), \ 1.25 \ (3\mathrm{H}, \mathrm{t}, \ ^{3}J \ 7), \ 1.79 \ (3\mathrm{H}, \mathrm{d}, \ ^{3}J_{\mathrm{PH}} \ 14) \ 2.29 \ (3\mathrm{H}, \mathrm{s}), \ 3.94 - 4.05, \ 4.14 - \\ 4.18 \ (4\mathrm{H}, \mathrm{m}), \ 4.66 \ (1\mathrm{H}, \mathrm{dd}, \ ^{2}J_{\mathrm{PH}} \ 15, \ ^{3}J \ 7.5), \ 5.94 \ (1\mathrm{H}, \mathrm{d}, \ ^{3}J \ 7.5, \ \mathrm{exchanges} \end{array}$

with D₂O), 7.00- 7.12 (2H, m), 7.09-7.17 (5H, m), 7.36-7.38 (2H, m); ¹³C NMR (CDCl₃) δ 15.9 (d, ³*J*_{PC} 4), 16.3 (d, ³*J*_{PC} 6), 21.1, 25.2, 61.9 (d, ²*J*_{PC} 4), 63.2 (d, ²*J*_{PC} 6), 64.6 (d, ²*J*_{PC} 6), 67.4 (d, ¹*J*_{PC} 157), 125.6, 127.2, 127.5, 128.8, 129.1, 138.2, 140.6, 140.8; ³¹P NMR (CDCl₃) δ 19.42; MS (FAB⁺) *m*/*z* 444 [100%, MH(³⁵Cl)⁺], 426 [43], 390 [44], 304 [98]; Anal. calcd for C₂₀H₂₇ClNO₄PS: C, 54.11; H, 6.13; N, 3.16. Found C, 54.08; H, 6.37; N, 3.09%.

$$\begin{array}{c} Q & Q \\ p\text{-Tolyl} \xrightarrow{S} NH & Q \\ Ph & P(OEt)_2 \end{array} \begin{array}{c} p\text{-Tolyl} \xrightarrow{S} NH & Q \\ p\text{-Tolyl} \xrightarrow{S} NH & Q \\ Ph & P(OEt)_2 \end{array} \begin{array}{c} P(OEt) \\ Ph & Cl & Me \end{array}$$

69:31 mixture of **4** and **5** (when distinguishable, data for major stereoisomer **4** is given first): R_f 0.3 (CH₂Cl₂-EtOAc, 5:1); $[\alpha]_D^{20}$ +59.8 (c 0.895, CHCl₃); IR (NaCl) 3217, 1242, 1020 cm⁻¹; ¹H

NMR (CDCl₃) δ 1.33, 1.40, (6H, t, ³*J* 7), 1.49, 1.72 (3H, d, ³*J*_{PH} 14, 15) 2.26, 2.41 (3H, s), 4.12-4.34 (4H, m), 4.87-4.92 (1H, m), 5.91, 5.99 (1H, d, ³*J* 4.5, 3, exchanges with D₂O), 7.07- 7.60 (9H, m); ¹³C NMR (CDCl₃) δ 16.2 (br), 21.1 (br), 25.1 (br), 58.9, 61.4, 62.9, 64.1 (br), 64.8 (br), 65.9 (d, ¹*J*_{PC} 159), 67.7 (d, ¹*J*_{PC} 159), 125.1, 125.7, 127.3, 127.6, 127.7, 128.7, 128.8, 129.6, 129.7, 130.6, 136.7 (d, ³*J*_{PC} 10), 135.7 (d, ³*J*_{PC} 10), 140.6, 140.8, 141.5, 142.3; ³¹P NMR (CDCl₃) δ 20.42, 20.88; Anal. calcd for C₂₀H₂₇ClNO₄PS: C, 54.11; H, 6.13; N, 3.16. Found C, 54.14; H, 6.24; N, 3.06%.



Diethyl $(S_S,2R,3R)$ -(+)-2-methyl-3-phenyl-1-(*p*-toluenesulfinyl)-aziridine-2-phosphonate (6). Typical procedure for aziridinyl phosphonate formation:

2-phosphonate (6). Typical procedure for aziridinyl phosphonate formation: In a 50 mL round-bottom flask equipped with a magnetic stirrer bar, rubber


septum and argon inlet was placed sodium hydride (32.4 mg, 60% dispersion in oil, 811 μ mol) which was washed with anhydrous LP (3 × 3 mL) [Washing performed by adding LP *via* syringe, stirring vigorously, allowing to settle, and removing liquid *via* syringe.] Residual solvent was removed under aspirator pressure and THF (8 mL) was added. To this stirred suspension was added phosphonate (+)-**3**

(180 mg, 405 µmol) dissolved in THF (2 mL) via syringe. After 20 min, the reaction mixture was quenched by addition of saturated aqueous NH₄Cl (2 mL). The mixture was diluted with H₂O (10 mL) and extracted with Et₂O (3×30 mL). The combined organic phases were dried (MgSO₄), filtered and concentrated to give a colourless oil. Flash chromatography (SiO₂, CH₂Cl₂-EtOAc, 5:1) afforded (+)-6 in a 10:1 mixture of invertomers as a colourless oil (114 mg, 69%); Rf 0.35 (CH₂Cl₂-EtOAc, 5:1); $[\alpha]_{D}^{20}$ +5.2 (c 1.4, CHCl₃); IR (NaCl) 1254, 1020 cm⁻¹; ¹H NMR (CDCl₃) δ 1.16 (3H, d, ³J _{PH}11, major), 1.38 (3H, t, ³J 7), 1.43 (3H, t, ³J 7), 1.94 (3H, d, ³J PH12.5, minor), 2.43 (3H, s, major), 2.44 (3H, s, minor), 4.18-4.33 (4H, m), 4.41 (1H, d, ³J PH10, major), 6.89-6.92 (2H, m, minor), 7.07-7.09 (2H, m, major), 7.22-7.24 (3H, m), 7.31-7.34 (2H, m), 7.67-7.69 (2H, m, minor), 7.74-7.75 (2H, m, major); ¹³C NMR (CDCl₃) (major invertomer only) δ 12.8, 16.4-16.5 (m), 21.5, 43.2, 45.4 (d, ¹J_{PC}) 181), 62.7 (d, ²*J*_{PC} 6), 63.0 (d, ²*J*_{PC} 6), 125.2, 127.8, 127.9, 128.1, 129.5, 133.5 141.8, 144.2; ³¹P NMR (CDC1₃) δ 24.32; MS (FAB⁺) m/z 408 [93%, MH⁺], 268 [100, M⁺-MeC₆H₄SO]; HRMS (C₂₀H₂₇NO₄PS⁺) found 408.1398; calcd 408.1401; Anal. calcd for C₂₀H₂₆NO₄PS: C, 58.95; H, 6.43; N, 3.44. Found C, 58.85; H, 6.43; N, 3.22%.

p-Tolyl OPhone Mephosphonate (A) and diethyl (S_S,2S,3S)-2-methyl-3-phenyl-1-(p-toluenesulfinyl)-aziridine-2-phosphonate (B). The same procedure as for the toluenesulfinyl)-aziridine 2-phosphonate (B). The same procedure as for the toluenesulfinyl satisfies a 69-31 mixture of 4 and 5 to afford a


69:31 mixture of A and B (81%, 1.32 mmol scale). Flash chromatography (SiO₂, CH₂Cl₂-EtOAc, 5:1) did not give further purification and afforded a 62:38 mixture of **A** and **B** as a colourless oil (45%) (when distinguishable, data for major stereoisomer **A** is given first); $R_f 0.2$ (CH₂Cl₂-EtOAc, 5:1); $[\alpha]_D^{20}$ +8 (c 0.8, CHCl₃); IR (NaCl) 1252, 1022 cm⁻¹; ¹H NMR (CDCl₃) δ 1.09-1.19 (6H, m), 1.40-1.49 (3H, m), 1.94 (3H, d, ³*J*_{PH} 12), 2.45, 2.35 (3H, s), 3.66-4.43 (5H, m), 7.02-7.34 (7H, m), 7.67-7.80 (2H, m); ¹³C NMR (CDCl₃) δ 15.6-16.4 (m), 21.3, 40.8, 44.5-45.8 (m), 46.8, 61.8 (d, ²J_{PC} 6), 62.5 (d, ²J_{PC} 6), 62.3 (d, ²*J*_{PC} 6), 63.2 (d, ²*J*_{PC} 6), 124.7, 124.9, 127.2, 127.3, 127.7, 127.8, 128.0, 129.6, 132.8, 133.8 141.9, 142.3, 142.5, 142.6; ³¹P NMR (CDCl₃) δ 19.04, 23.66; Anal. calcd for C₂₀H₂₆NO₄PS: C, 58.95; H, 6.43; N, 3.44. Found C, 58.51; H, 6.56; N, 3.36%.

Diethyl (2R.3R)-(+)-2-methyl-3-phenyl-aziridine-2-phosphonate (7). In a 50 mL round-bottom flask, equipped with a magnetic stirrer bar, rubber septum and argon balloon was placed sulfinyl aziridine (+)-6 (240 mg, 589 μ mol) dissolved in acetone-H₂O (1:1, 14 mL). The vigorously stirred solution was cooled to 0 °C

and TFA (226 µL, 2.94 mmol) added via syringe. After stirring for 10 min, the reaction mixture was diluted with H₂O (10 mL) and aqueous NH₄OH added until pH 9 was attained. The mixture was extracted with Et₂O (2 \times 20 mL) and CH₂Cl₂ (2 \times 20 mL), the combined organic phases dried (MgSO₄), filtered and concentrated to give a colourless oil. Flash chromatography (SiO₂, CH₂Cl₂-

EtOAc, 2:1) afforded (+)-7 as a colourless oil (121 mg, 76%); $R_f 0.5$ (CH₂Cl₂-EtOAc, 2:1); $[\alpha]_D^{20}$ +26 (c 0.56, CHCl₃); IR (NaCl) 3246, 1251, 1024 cm⁻¹; ¹H NMR (CDCl₃) δ 1.03 (3H, d, ³J PH 12), 1.39 (3H, t, ³J 7), 1.41 (3H, t, ³J 7), 1.69 (1H, br.s), 3.68 (1H, d, ³J PH 10), 4.16-4.25 (4H, m), 7.28-7.36 (5H, m); ¹³C NMR (CDCl₃) δ 13.0 (d, ²J_{PC} 8), 16.5 (d, ³J_{PC} 6), 34.5 (d, ¹J_{PC} 183), 40.5, 62.5 (d, ²J_{PC} 6), 127.4, 127.9, 128.1, 135.5; ³¹P NMR (CDCl₃) δ 28.50; MS (FAB+) m/z 292 [48%, MNa+], 270 [100, MH⁺]; HRMS (C₁₃H₂₁NO₃P⁺) found 270.1251; calcd 270.1259; Anal. calcd for C₁₃H₂₀NO₃P: C, 57.98; H, 7.49; N, 5.20. Found C, 57.63; H, 7.50; N, 5.06%.

phenyl-aziridine-2-phosphonate (D). In a 100 mL round-bottom flask equipped with a magnetic stirrer bar,

rubber septum and argon balloon was placed a 62:38 mixture of sulfinyl aziridines A and B (138 mg, 339 μ mol) dissolved in acetone-H₂O (1:1, 8 mL). The vigorously stirred solution was cooled to 0 °C and TFA (131 µL, 1.70 mmol) added via syringe. After stirring for 25 min, the reaction mixture was diluted with H₂O (10 mL) and aqueous NH₄OH added until pH 9 was attained. The mixture was extracted with Et₂O (2 × 20 mL) and CH₂Cl₂ (3 × 20 mL), the combined organic phases dried (MgSO₄), filtered and concentrated to give a colourless oil. Flash chromatography (SiO₂, EtOAc) afforded (-)-D (34.8 mg, 38%) and (-)-C (49.8 mg, 55%) as colourless oils:

(-)-C; R_f 0.25 (EtOAc); $[\alpha]_{D}^{20}$ -6.9 (c 0.88, CHCl₃); IR (NaCl) 3241, 1238, 1030 cm⁻¹; ¹H NMR (CDCl₃) δ 1.10-1.16 (6H, m), 1.59 (3H, d, ³J_{PH} 11), 3.19 (1H, d, ³J_{PH} 6.5), 3.56-3.60 (1H, m), 3.79-3.84 (3H, m), 7.23-7.33 (3H, m), 7.40-7.42 (2H, m); ¹³C NMR (CDCl₃) δ 16.1 (br), 21.7 (br), 45.7 (br), 61.6 (d, ²*J*_{PC} 6), 61.9 (d, ²*J*_{PC} 6), 127.2, 127.6, 127.9, 135.8; ³¹P NMR (CDCl₃) δ 24.38; MS (FAB+) *m/z* 539 [5%, M₂H+], 270 [100, MH+]; HRMS (C₁₃H₂₁NO₃P+) found 270.1253; calcd 270.1259.

(-)-**D**; $[\alpha]_{D}^{20}$ -26 (c 0.56, CHCl₃); MS (FAB⁺) m/z 270 [100%, MH⁺]; HRMS (C₁₃H₂₁NO₃P⁺) found 270.1253; calcd 270.1259; spectroscopic data as for (+)-7.

 $\begin{array}{c} O \\ H_0 \\ Ph \\ H_0 \\ H_0 \\ Me \end{array}$ Diethyl (R)-(+)-1-amino-1-methyl-2-phenylethylphosphonate (8). General procedure for hydrogenation of aziridines: In a 10 mL round-bottom flask equipped with a magnetic stirrer bar, rubber septum and argon balloon was placed aziridine

(+)-7 (64 mg, 238 µmol) and Pd/C (140 mg, 10% Pd), suspended in MeOH (2 mL). To the stirred solution was added HCO₂NH₄ (98.0 mg, 1.55 mmol) in one portion. After stirring for 15 h, the reaction mixture was filtered through celite[®] and the residue washed with MeOH (2 \times 10 mL) and Et₂O (2 \times 10 mL). The combined organic phases were dried (MgSO₄), filtered and concentrated to give a colourless oil. Flash chromatography (SiO₂, EtOAc) afforded (+)-8 as a colourless oil (59.3 mg, 92%); Rf 0.15 (EtOAc); $[\alpha]_{D}^{20}$ +1.5 (c 0.75, CHCl₃); IR (NaCl) 3372, 3292, 1233, 1026 cm⁻¹; ¹H NMR (CDCl₃) δ 1.21 (3H, d, ³*J*_{PH} 16), 1.34 (6H, app.q, ³*J* 7), 1.60 (2H, br), 2.92 (1H, dd, ²*J* 13.5, ³*J*_{PH} 9), 2.98 (1H, dd, ²*J* 13.5, ³*J*_{PH} 9), 4.14-4.21 (4H, m), 7.23-7.33 (5H, m); ¹³C NMR (CDCl₃) δ 16.5, 22.2, 42.7, 52.4 (d, ¹*J*_{PC} 153), 62.4 (d, ²*J*_{PC} 6), 126.6, 127.9, 131.0, 135.5 (d, ³*J*_{PC} 12); ³¹P NMR (CDCl₃) δ 30.94; MS (FAB⁺) *m*/*z* 543 [5%, M₂H^{+]}, 272 [69, MH⁺], 180 [67, M⁺-Bn], 154 [100]; Anal. calcd for C₁₃H₂₂NO₃P: C, 57.55; H, 8.17; N, 5.16. Found C, 57.30; H, 7.93; N, 4.79%.

 $\begin{array}{c} \begin{array}{c} \mathsf{Ph}_{\mathsf{Me}}(\mathsf{OEt})_2\\ \mathsf{NH}_2 \end{array} \end{array} \begin{array}{c} \textbf{Diethyl} \ (S)-(-)-1-amino-1-methyl-2-phenylethylphosphonate (9). The same procedure as for the preparation of (+)-8 was applied, using either (-)-C or (-)-D. \\ Flash chromatography (SiO_2, EtOAc, EtOAc-MeOH, 19:1) afforded (-)-9 as a colourless oil (57\%, 144 \ \mu \text{ mol scale from (-)-C and 61\%, 111 \ \mu \text{ mol scale from (-)-D}), which \end{array}$

colourless oil (57%, 144 μ mol scale from (-)-**C** and 61%, 111 μ mol scale from (-)-**D**), which exhibited spectroscopic data as for (+)-**8**; $[\alpha]_D^{20}$ -1.4 (c 0.77, CHCl₃); HRMS (C₁₃H₂₂NNaO₃P⁺) found 294.1229; calcd 294.1235.

References

- F. A. Davis, Y. Zhang, Y. Andemichael, T. Fang, D. L. Fanelli, and H. Zhang, J. Org. Chem., 1999, 64, 1403-1406.
- 2. Gadja, T, *Synthesis*, **1990**, 717-718
- 3. F. A. Davis and W. McCoull, *Tetrahedron Lett.*, **1999**, *40*, 249-252.